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Abstract. The processing, storage and transmission of large-scale point
clouds is an ongoing challenge in the computer vision community which
hinders progress in the application of 3D models to real-world settings,
such as autonomous driving, virtual reality and remote sensing. We pro-
pose a novel, one-shot point cloud simplification method which preserves
both the salient structural features and the overall shape of a point
cloud without any prior surface reconstruction step. Our method em-
ploys Gaussian processes suitable for functions defined on Riemannian
manifolds, allowing us to model the surface variation function across any
given point cloud. A simplified version of the original cloud is obtained
by sequentially selecting points using a greedy sparsification scheme.
The selection criterion used for this scheme ensures that the simplified
cloud best represents the surface variation of the original point cloud.
We evaluate our method on several benchmark and self-acquired point
clouds, compare it to a range of existing methods, demonstrate its ap-
plication in downstream tasks of registration and surface reconstruc-
tion, and show that our method is competitive both in terms of em-
pirical performance and computational efficiency. The code is available
at https://github.com/stutipathak5/gps-for-point-clouds.

Keywords: Point clouds · Simplification · Gaussian processes · Rieman-
nian manifolds

1 Introduction

Recent years have seen a growing need for the conversion of real-world objects
to computerized models [9, 35] across several domains, such as digital preserva-
tion of cultural heritage [27] and manufacturing of mechanical parts for indus-
try [21]. This need has given rise to a range of modern data acquisition techniques
such as laser scanning, which densely samples the surface of a 3D object, thereby
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generating millions of significantly redundant data points. 3D models can be ob-
tained from this point cloud by constructing a polygonal mesh using techniques
such as the ball-pivoting algorithm and Poisson surface reconstruction [1, 2, 16].
However, the sheer size of these dense point clouds makes this task computa-
tionally expensive in terms of both memory and time. Furthermore, the size of
such generated meshes impedes further processing efforts, and necessitates the
use of costly mesh simplification strategies [7, 11, 13] for size reduction. This
makes efficient simplification of the underlying point cloud, prior to any surface
reconstruction, an important and impactful problem which if addressed, has the
potential to significantly improve the scalability of several computer vision ap-
plications.

The inherent dependency of surface reconstruction methods on surface nor-
mals, makes the visual perceptual quality of a point cloud an indirect yet im-
portant aspect of any mesh processing pipeline [7]. Although it is difficult to
quantify this visual degradation in the case of point cloud simplification meth-
ods, one can say that the more enhanced the characteristic features of an object
(such as sharp edges and high curvature regions) are in the simplified cloud, the
higher is its human perceptual quality [19]. Therefore, an optimal point cloud
simplification technique should preserve both the global structural appearance,
and the salient features of the point cloud in question. Some of these methods
will be discussed in detail in the upcoming section.

Given that the point cloud representing an object exists on a Riemannian
manifold in 3D space, Euclidean distance fails to measure the intrinsic distance
between any two points on its surface. Recently, techniques which extend ex-
isting machine learning methods to model functions defined on manifolds have
gained popularity. For instance, Gaussian processes (GPs), a widely used class
of non-parametric statistical models, which often use Euclidean distance-based
covariance functions, have been made compatible for functions whose domains
are compact Riemannian manifolds using ideas from harmonic analysis [5].

ProposedOriginal HC WLOP Potamias et al.

Fig. 1. Point cloud simplification methods typically fail to strike a balance between pre-
serving sharp features and maintaining the overall structure of the original cloud. Our
approach circumvents this trade-off by achieving both targets, as is evident from the
simplified versions of the Stanford Bunny [20] obtained using the proposed technique
and three pre-existing methods; Hierarchical Clustering (HC) [26], Weighted Locally
Optimal Projection (WLOP) [14], and Potamias et al. [28] simplification.
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In this work, we propose a novel, one-shot, feature-preserving simplification
method using GPs with kernels defined on Riemannian manifolds. Using a greedy
algorithm for GP sparsification, we iteratively construct a simplified represen-
tation of a point cloud without the need for any prior surface reconstruction or
training on large point cloud datasets. We experiment on several point clouds,
compare with several techniques and demonstrate competitive results both em-
pirically and in terms of computational efficiency. Qualitatively, as shown in
Figure 1, our method effectively preserves visual features whilst providing a suf-
ficiently dense coverage of the domain of the original cloud.

Outline of the paper: Section 2 briefly reviews a number of existing point
cloud simplification techniques which are relevant to our work. Section 3 provides
background details regarding the computation of surface variation, GPs with ker-
nels defined on non-Euclidean domains and a greedy subset-of-data scheme for
GP inference. Section 4 outlines the proposed GP-based point cloud simplifi-
cation algorithm. Section 5, in combination with the supplementary material,
includes an empirical evaluation of our method on various benchmark and self-
acquired point clouds, with comparisons to competing simplification techniques,
along with applications to some downstream tasks and ablation studies. Finally,
Section 6 summarises our contributions and provides a brief discussion of the
scope for future work.

2 Related work

In this section we will introduce a number of existing point cloud simplification
techniques, with a particular focus on works which have a feature-preserving
element to their approach. Some of the earliest curvature-sensitive simplification
techniques were proposed by Pauly et al. [26] and Moenning et al. [25]. The
former method, termed Hierarchical Clustering (HC), recursively divides the
original point cloud into two sets, until each child set attains a size smaller than
a threshold size parameter. Moreover, a variation parameter plays an important
role in sparsifying regions of low curvature by selective splitting. The perceptual
quality and the size of the simplified cloud depend entirely on these two param-
eters, which must be carefully and manually tuned, making HC unsuitable for
automated applications. Additionally, the surface reconstructions obtained from
HC-simplified point clouds are often poor for clouds with complex surfaces, as
will be seen in Section 5. This is because it is challenging to tune the parameters
of HC in such a way that preservation of sharp features is achieved whilst still
ensuring dense coverage of the original cloud.

Another widely-used technique is Weighted Locally Optimal Projection (WLOP)
proposed by Huang et al. [14]. In this work, the authors modified the existing
parameterization-free denoising simplification scheme termed Locally Optimal
Projection (LOP) [22], which is unsuitable for non-uniformly distributed point
clouds. WLOP overcomes this limitation by incorporating locally adaptive den-
sity weights into LOP. Although WLOP results in an evenly distributed simpli-
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fied cloud, it still lacks sensitivity towards salient geometric features which will
also become apparent in Section 5. Recently, Potamias et al. [28] have proposed
a graph neural network-based learnable simplification technique which uses a
modified variant of Chamfer distance in order to backpropagate errors. Their
method can simplify point clouds in real-time but involves a computationally
intensive training process using large point cloud datasets such as TOSCA [6].
Moreover, their model’s efficiency is limited to simplifying point clouds which are
structurally similar to the learned data, as inherently neural networks struggle to
generalize outside of the domain of the training data. Even more recent work from
Wu et al. [33], named APES, proposes an edge-sampling method which claims
to capture the salient points within a point cloud using an attention mechanism.
As shown in their paper, this technique generally provides good results for some
point cloud tasks. However, as discussed by the authors themselves, the edge-
enhancing nature of their method hinders upsampling operations, which can lead
to poor reconstruction and segmentation results later.

Approximate Intrinsic Voxel Structure for Point Cloud Simplification (AIVS),
introduced by Lv et al. [24], combines global voxel structure and local farthest
point sampling to generate simplification demand-specific clouds which can be
either isotropic, curvature-sensitive or have sharp edge preservation. As with
HC however, AIVS requires manual tuning of user-specified parameters in or-
der to obtain optimal results. Additionally, even in parallel computation mode,
AIVS is quite costly in terms of computational runtime. Potamias et al. and Lv
et al. do not provide open-source implementations of their curvature-sensitive
simplification techniques, which poses a challenge for reproducibility and bench-
marking. However, we thank the authors of Potamias et al. for directly providing
some simplified point clouds; their results are included later in this paper. Qi
et al. [29] introduced PC-Simp, a method which aims to produce uniformly-
dense and feature-sensitive simplified clouds, leveraging ideas from graph sig-
nal processing. This uniformity depends on a weight parameter which as with
HC and AIVS, is user-specified. Alongside simplification, they also apply their
technique to point cloud registration. However, in practice PC-Simp is unreli-
able for complex-surfaced point clouds as it fails to provide a high degree of
feature-preservation, regardless of the weight parameter chosen. Additionally, as
discussed later in Section 5, the runtime of this technique is considerably longer
than any other method tested.

Finally, it has been observed that most of the aforementioned works on
feature-preserving point cloud simplification schemes experiment on structurally
simple point clouds. Furthermore, surface reconstruction results are rarely pre-
sented and discussed. Hence, to underline the efficiency of our method, we ex-
periment on point clouds generated from complex-surfaced objects and provide
the corresponding reconstruction results. Also, some of the datasets used by
the mentioned techniques are synthetically generated and already have a higher
concentration of points around salient features when compared to low curvature
regions (for example, the TOSCA dataset). Hence, unlike them, we do not ex-
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periment on point clouds from these datasets as it defeats the purpose of being
a feature-sensitive simplification technique.

3 Background

3.1 Surface variation

Consider an unstructured dense point cloud P = {p1,p2, ...,pN} of size N
existing in 3D Euclidean space, R3. We can generate the local neighbourhood
Npi of each point pi in P by two different methods. Firstly, we can gather all
of the points within a certain Euclidean distance r from pi; this approach is
referred to as radius search. Alternatively, we can gather all of the k-nearest
Euclidean neighbours of pi, which is referred to as KNN search. The choice of
this scale-factor (r or k) not only depends on the size and density of a point cloud
but also on the desired level of detail for a given application. These aspects make
the task of automatic estimation of the neighbourhood of a point in a cloud an
important, yet challenging one [31]. In this work, we implement the approach
taken by the CloudCompare software package, where this process is automated
by first calculating an approximate surface per point from the bounding box
volume. This estimated value, along with a user-defined approximate neighbour
number, is used to estimate a radius r, which is then used to perform radius
search for each point. In our method, we have fixed this approximate neighbour
number to 25 as it provides good empirical performance across a wide variety of
point clouds. However, we provide ablation studies over a range of neighbourhood
sizes in the supplementary material.

Several local surface properties [32] of the point cloud at a given query point
pi can be estimated by analysing the eigenvalues and eigenvectors of the covari-
ance matrix Ci defined by the point’s neighbourhood Npi = {pi1 ,pi2 , ...,pin}:

Ci =


pi1 − p̄i

pi2 − p̄i

...
pin − p̄i


T

·


pi1 − p̄i

pi2 − p̄i

...
pin − p̄i

 , (1)

where, p̄i is the centroid of all the points pii ∈ Npi . By means of principal
component analysis (PCA), we may now fit a plane tangent to the 3D surface,
formed by all of the points within Npi , at p̄i. As Ci is a 3 × 3 symmetric and
positive semi-definite matrix, all of its eigenvalues (λj , j ∈ {0, 1, 2}) are positive
and real, whilst the corresponding eigenvectors (vj) form an orthogonal frame
corresponding to the principal components of Npi . If 0 ≤ λ0 ≤ λ1 ≤ λ2, then v2

and v1 span the aforementioned tangent plane, whilst v0 represents the vector
perpendicular to it. Therefore, v0 can be considered as an estimate of the surface
normal to the point cloud (without actual surface reconstruction) at query point
pi. Furthermore, as defined by Pauly et al. [26], we can calculate the surface
variation at the query point as:

σn(pi) =
λ0

λ0 + λ1 + λ2
. (2)
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This quantity is not only closely related to the surface curvature at pi but also
serves as a more suitable criterion for simplification, as discussed in detail by
the authors [26].

3.2 Gaussian processes on Riemannian manifolds

Gaussian processes (GPs) are non-parametric Bayesian models which allow for a
rigorous estimation of predictive uncertainty, and have been widely studied and
applied by the machine learning community over the last two decades. Consider
a scenario where we have a training dataset of N observations, {xi, yi}Ni=1, where
xi ∈ RP and yi ∈ R. In our application, xi ∈ R3 is a Euclidean coordinate, and
yi is the surface variation associated with said coordinate. We assume access to
noisy observations of an underlying latent function, such that yi = f(xi) + ϵi,
where ϵi ∼ N (0, σ2

y). A GP defines a distribution over functions which we can use
to infer the form of the true latent function which generated our training data.
The GP prior can be written as f ∼ GP (µ (x) , k (x,x′)), where, µ(·) and k(·)
are the mean and kernel functions respectively, which completely describe our
process [30]. As is common, we assume a zero-mean prior throughout this work,
using the kernel as the primary means of modeling the variation in our function
over its domain. A popular choice for GP kernels is the Matérn class of covariance
function, which takes the form, kν(x,x′) = σ2 21−ν

Γ (ν)

(
r
√
2ν
κ

)ν

Kν

(
r
√
2ν
κ

)
, where

r = ∥x− x′∥ and Kν is a modified Bessel function. We define θ = {σ2, κ, ν} to
be the set of kernel hyperparameters; σ2 controls the variance of the GP, κ the
lengthscale of its variation and ν its degree of differentiability.

Inference: Using Bayes’ Rule, we can condition our GP on the training data
and derive closed form expressions for the posterior mean and covariance:

µpost = K∗(K+ σ2
yI)

−1y, (3)

Σpost = K∗∗ −K∗(K+ σ2
yI)

−1K⊤
∗ . (4)

Generally, the noise variance σ2
y and the kernel function hyperparameters θ are

optimised via maximisation of the log-marginal likelihood, which can also be
derived analytically. Where X ∈ RN×P and y ∈ RN are matrix and vectorial
representations of our training inputs and targets respectively, the log-marginal
likelihood takes the form [30],

log p(y | X,θ,σ2
y) = −1

2
y⊤ (

K+ σ2
yI
)−1

− 1

2
log | K+ σ2

yI | −
N

2
log(2π).

(5)

Kernels on manifolds: Many different kernel functions for GPs exist, and
choosing a kernel is in itself a model selection problem as some kernels are more
suited to modeling certain types of data. However, one characteristic which many
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kernels share is that they are defined using Euclidean distance. This presents an
issue should we wish to use a GP to model variation in a quantity over a non-
Euclidean space. Borovitskiy et al. [5] proposed a solution to this problem in the
form of an extension to the Matérn kernel, which allows for modeling of functions
whose domains are compact Riemannian manifolds. The approach proposed by
the authors involves two stages. Firstly, numerical estimation of the eigenvalues
λn and eigenfunctions fn corresponding to the Laplace-Beltrami operator of the
given manifold is performed. Secondly, for a manifold of dimensionality d, the
kernel is approximated using a finite truncation of:

kν(x,x
′) =

σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)−ν− d
2

fn(x)fn(x
′), (6)

where, Cν is a normalizing constant. The hyperparameters σ2, κ and ν have sim-
ilar interpretations to those introduced for the conventional Euclidean Matérn
kernel.

3.3 Greedy subset-of-data algorithm

A major challenge which arises when working with GPs in practice is the O(N3)
complexity associated with performing exact inference, which arises due to the
matrix inversions in Equations (3) and (4). To circumvent this issue, numerous
formulations of sparse GPs have been proposed, many of which are based on
approximate inference techniques and concepts such as inducing points [23]. In
this work however, we consider the subset-of-data (SoD) approach. As explained
in Section 8.3.3 of [30], it is a conceptually simple form of sparse approximation
which allows for exact Bayesian inference. In this setting, rather than modifying
the formulation of the GP itself, we simply perform exact inference using a
carefully selected subset of M(<< N) observations. Specifically, for our case
we modify the greedy SoD approach of [18], which uses a selection criterion
to sequentially construct a subset of size M which is representative of our full
training set of N observations. We use this technique for GP sparsification in
order to construct a set of inducing points for a point cloud which are best
capable of representing the changes in surface variation over the cloud; this set of
points forms our simplified point cloud. The original method involves randomly
selecting one initial inducing point and then adding one point to the set at each
iteration, however we have employed farthest point sampling (FPS) for selecting
a set of initial inducing points instead of one, and we add several points to our
set of inducing points at each iteration. Our approach is explained in further
detail in Section 4.

Our method forms a simplified point cloud which is a subset of the orig-
inal, thus the optimization problem is a discrete one. There has been recent
work on inducing point optimization on discrete domains [10], however such
methods only obtain comparable performance to methods based on greedy se-
lection of the inducing points from the input domain, which are considerably
conceptually simpler. The main disadvantage of a greedy approach is that the
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training set does not necessarily span the whole input domain, however in our
setting this is indeed the case, making our application especially well-suited to
a greedy approach. Additionally, our proposed method allows us to obtain com-
petitive results for clouds containing millions of points, whilst still employing
exact Bayesian inference rather than approximate variational schemes, which
can often underestimate the variance of the posterior distribution [4].

4 Point cloud simplification with Riemannian Gaussian
processes

In this section, we outline our GP-based approach with the help of a concise
algorithm. We can represent a point cloud of size N as a set of 3D Euclidean
coordinates P = {xi}Ni=1, where xi ∈ R3. The surface variation yi ∈ R at each
point in P can be computed using Equation (2). Using this data we formulate
a regression problem, whereby we employ a GP with a Matérn kernel defined
on a Riemannian manifold (as described in Section 3.2) to predict the surface
variation from the coordinates of each point. We then employ the greedy subset-
of-data scheme discussed in Section 3.3 in order to obtain a simplified set of
M(<< N) 3D coordinates, Psimp = {xj}Mj=1, where Psimp ⊂ P .

We formally outline our proposed approach in Algorithm 1. FPS(P, kinit)
denotes a function which selects kinit initial points from P using FPS; we use
this to initialise our active set Psimp with an initial set of points from across
the point cloud. MAX(s, R, kadd) selects the points from the remainder set R
which are associated with the kadd largest values in our selection criterion vector
s. The notation y(R) denotes a vector containing the target surface variation
values associated with each of the points contained within the set R. At each
step t of the algorithm, we update the posterior mean µt and covariance Σt

using Equations (3) and (4) respectively, where the active set Psimp is used as
training data, whilst the remainder set R is unseen test data.

Algorithm 1 GP-based simplification algorithm
Data: P , y, M , kinit, kadd, kopt, GP prior GP(0, k(·, ·)), where k is defined in Eq.
(6)
Result: Psimp

Popt ← random subset of kopt points from P ;
Optimise GP hyperparameters using Eq. (5), Popt and y(Popt);
Active set Psimp ← FPS(P, kinit);
Remainder set R← P − Psimp;
while |Psimp| < M do

Compute µt and Σt using Eq. (3) and (4);
s←

√
diag(Σt) + |µt − y(R)|;

Psimp ← Psimp + MAX(s, R, kadd);
R← R−MAX(s, R, kadd);

end while
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To clarify, we predict the surface variation and the uncertainty values for R
based on Psimp at each iteration of our algorithm. The selection criterion which
we use favours selection of points within the original cloud which lie in regions of
high predictive uncertainty and/or error. By selecting a set of points using this
criterion, we form a simplified cloud which implicitly favours selection of points
surrounding finer details within the cloud, where the error and uncertainty is
likely to be high if we have not yet selected a sufficient number of points around
said location.

As Psimp grows with each iteration to be gradually more representative of
our input data, the uncertainty and predicted surface variation values for points
in R also change. For example, consider two neighbouring points on the tip of
one of the Stanford bunny’s ears, and assume that neither of them are currently
in Psimp. If one of these points is added to Psimp, the elements of the uncertainty√
diag(Σt) and error |µt−y(R)| associated with the second point will decrease,

and in subsequent iterations it may no longer be one of the top-ranked points
based on the selection metric s.

5 Empirical evaluation

In this section, we extensively evaluate the proposed simplification method using
various point cloud datasets and processing techniques. First, we compare our
simplification technique both quantitively and qualitatively using benchmark
object level point clouds as given in subsection 5.1. Second, in subsection 5.2
we extend the use-case of our algorithm as a time and memory efficient pre-
processing step for the downstream task of point cloud registration. Moreover,
we provide some experiments on scene level and self-acquired point clouds along
with ablation studies in the supplementary material (Section 2).

5.1 Benchmark object level point clouds

Evaluation criteria: In order to evaluate the performance of our method in
comparison to other simplification techniques, we firstly use each simplified point
cloud obtained from three object level point clouds to form simplified meshes,
using screened Poisson surface reconstruction [17]. We can then compute the
reconstruction errors between the original meshes, and the reconstructed meshes
formed from our simplified clouds. Specifically, we choose to evaluate the mean
and maximum Hausdorff distance [8]. Evaluating the error associated with mesh
reconstruction is effective at quantifying the ability of each method to preserve
features from the original cloud, as accurate reconstruction of a mesh from a
simplified point cloud requires that a high density of points be placed in the
vicinity of finer details within the cloud. The MeshLab software was used to
reconstruct all surfaces and compute the Hausdorff distances. Also, given that
one of our primary aims is to preserve sharp features within each point cloud,
we also report the average surface variation over each simplified point cloud.
The surface variation at each point is computed using the approach described in
Section 3.1.
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Baselines: We use the aforementioned evaluation procedure to compare our
method (denoted GP) empirically to a number of competing simplification tech-
niques discussed in Section 2. We compare our approach to PC-Simp, AIVS,
Potamias et al., HC and WLOP, with the latter two approaches implemented
using the CGAL library. Additionally, we provide a visual comparison of our
simplification method with APES. For the HC method, the size and variation
parameters discussed in Section 2 were manually tuned to obtain approximate
desired simplified sizes. Also, as noted in Section 2, we use the non-curvature
aware version of the AIVS algorithm, as there is no available open-source imple-
mentation of the curvature-aware variant.

GP (Proposed) HC WLOP PC-Simp              AIVS      Potamias et al.            

v

Fig. 2. Simplified representations of the Dragon point cloud for simplification ratio
α = 0.03 (top row) and associated reconstructed meshes (bottom row) for all evaluated
simplification techniques.

Experimental details: We evaluate our proposed method and the aforemen-
tioned baselines on three complex object-level point clouds from the Stanford
3D Scanning Repository [20], namely Armadillo (N = 1, 72, 974), Dragon (N =
4, 37, 645) and Lucy (N = 1, 40, 27, 872). Let the simplification ratio be defined
as α = M/N . In this work we focus on the challenging regime where we wish to
significantly reduce the size of the cloud, such that α << 1. It is in this regime
that feature-preserving techniques such as ours become particularly important,
as we do not have a large number of points to select, thus we must efficiently
select points which allow us to capture the salient features of the original cloud.
We chose α for each cloud by finding the minimum α at which all evaluated
techniques were capable of forming simplified clouds from which meshes visually
comparable to the original meshes could be generated [20]. This value varies
depending on the surface complexity of each cloud, thus for Armadillo, Dragon
and Lucy we chose α = 0.05, 0.03 and 0.002 respectively. Additionally, we also
visually evaluate the point cloud simplification results of all aforementioned tech-
niques on a noisy Armadillo from the PCPNet dataset [12], with α = 0.05.
This corresponds to the original Armadillo model surface sampled 105 times
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(N = 1, 00, 000), with Gaussian noise (of standard deviation σ = 2.5× 10−3× d,
where d is bounding box diagonal length) added to every point position. We also
perform the same evaluation for three objects, an airplane, a glass and a toilet
(N = 2, 048 for all three) from ModelNet40 dataset [34] to compare our method
with APES.

GP (Proposed) HC WLOP PC-Simp              AIVS             Potamias et al.       

Fig. 3. Simplification results of a noisy Armadillo with Gaussian noise added to every
point position (of standard deviation σ = 2.5 × 10−3 × d, where d is the bounding
box diagonal length) for simplification ratio α = 0.05 for all evaluated simplification
techniques.

Discussion: From the results presented in Table 1, it is clear that our pro-
posed method is capable of comparable empirical performance to many of the
existing methods for simplifying point clouds. The GP-based approach outper-
forms the AIVS baseline across all experiments and metrics, and outperforms
the PC-Simp baseline on all but the mean Hausdorff distance for the Armadillo
experiment. Moreover, our algorithm also runs considerably faster than both of
these approaches. Note that due to the scale of Lucy, we were unable to evaluate
PC-Simp on this cloud as it was taking more than two hours to run.

Table 1. Empirical results and total runtimes (time taken by surface variation com-
putation and simplification) for all tested simplification methods and point clouds. We
report the maximum and mean Hausdorff distances between the original meshes, and
the meshes reconstructed from the simplified point clouds. Also reported is the aver-
age surface variation over each simplified point cloud. Best, second-best and third-best
results are in red, green and blue respectively. It is worth mentioning that as per the
evaluated metrics, our algorithm mostly stays within the top three methods.

Mean Hausdorff Distance (↓) Max. Hausdorff Distance (↓) Mean Surface Variation (↑) Total Time (s) (↓)

Armadillo Dragon Lucy Armadillo Dragon Lucy Armadillo Dragon Lucy Armadillo Dragon Lucy

GP (ours) 0.246 0.000246 1.11 3.26 0.00457 195.78 0.0728 0.0546 0.0724 0.8 1.4 12.9
HC 0.374 0.000758 1.14 3.26 0.0141 195.41 0.0803 0.0686 0.0762 0.1 1.1 10.0

WLOP 0.197 0.000188 1.29 4.14 0.00417 195.52 0.0557 0.0413 0.0631 3.5 6.5 84.2
PC-Simp 0.241 0.000487 - 5.48 0.00802 - 0.0364 0.0433 - 132.6 245.5 -

AIVS 0.715 0.000638 8.75 4.11 0.00539 196.45 0.0513 0.0441 0.0666 17.2 44.6 1983.5
Potamias et al. 0.215 0.000599 4.28 3.47 0.00933 190.00 0.0478 0.0650 0.0511 0.00060 0.00070 0.00212
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Original GP (Proposed)
0.5

GP (Proposed)
0.25

APES
0.5

APES
0.25

Fig. 4. Simplification results of an airplane, a glass and a toilet point cloud for simpli-
fication ratios α = 0.25 and 0.5 using APES and GP-based simplification.

HC and Potamias et al. are the only baselines with shorter runtimes than our
method, and obtain maximum Hausdorff distances comparable to those obtained
by our approach. However, as discussed in Section 2, tuning the user-specified HC
parameters make striking a balance between feature preservation and retaining
a sufficient density of points across the cloud relatively challenging. Moreover,
there is no control over the size of the simplified cloud, as discussed by the
authors [26] and in subsequent work [24]. We tuned this baseline to attempt to
balance this trade-off, and whilst the HC-simplified clouds shown in Figures 2
and 3 here, and Figure 3 of the supplementary material, do have clearly preserved
features (an observation supported by the high mean surface variation across all
clouds), the density of points away from these areas is very low. This leads to
inferior mesh reconstructions compared to our approach, as evidenced by the
fact that we obtain superior mean Hausdorff distance compared to HC across
all three clouds.

Since results and inference times for the Potamias et al. approach were pro-
vided by the author of the paper, we do not have knowledge of the exact details
of their experimental setup, especially the time required in hours to train the
model. As mentioned in Section 2, their learning-based approach demands huge
datasets to train on, which not only increases the computational requirements
but also limits their method’s generalizability. When compared to our method
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quantitatively, our method generally gives superior results, except for two of
the nine error metric values. This is supported by the quality of their simplified
point clouds and the corresponding reconstructions shown in Figures 2 and 3
here, and in Figures 2, 3 and 5 of the supplementary material. Although their
method performs best in the case of Lucy’s maximum Hausdorff distance, in re-
ality their simplified cloud gives arguably the poorest qualitative reconstruction
result amongst all of the other baselines. As expected, the inference time of their
approach is the lowest of all the baselines, because of their neural network-based
approach, which involves pre-training.

The WLOP baseline does not efficiently preserve the features and favours
uniformly covering the domain of the original cloud. Therefore, the mean sur-
face variation of the WLOP simplified clouds is lower, but overall the Hausdorff
distances obtained from the reconstructed meshes are superior to those obtained
by our method. However, it is noteworthy that on the largest and unarguably
the most challenging point cloud, Lucy, our method achieves a superior mean
Hausdorff distance as compared to all of the other techniques evaluated, includ-
ing WLOP. Additionally, WLOP is significantly slower than our approach, as
shown in Table 1. Our surface variation computation is currently performed on
a CPU, therefore further improvements to the runtimes of our method shown
could be achieved by re-implementing this in a GPU-compatible framework.

Overall, these results show that our approach provides a computationally
efficient option for performing point cloud simplification in settings where the
user wishes to strike a balance between preserving high fidelity around sharp
features in the cloud, and ensuring that the simplified cloud covers the manifold
defined by the original cloud with a sufficient density of points. This is important
for generating reconstructions which resemble the original meshes, as is evident
from visual inspection of the reconstruction results in Figure 2 here and Figure
3 of the supplementary material. In terms of surface reconstruction, our method
clearly outperforms all of the other techniques for the Dragon (compare the tail,
teeth, horns and the face detailing for all methods and additionally the curved
body for HC) and the Armadillo (compare the ears, hands and feet across all the
methods) and gives competitive results for Lucy, shown in Figure 2 of the sup-
plementary material. We highlight once again the poor surface reconstructions
resulting from the Potamias et al. simplified clouds, compared to those obtained
using all of the other baselines. Again, visual inspection of the simplification
results for the noisy Armadillo in Figure 3 demonstrates the balanced feature-
sensitivity of our method in comparison to others. We experiment with more
noise levels in the supplementary material (Section 2). Finally, from Figure 4 we
can see how the edge-sampling-based APES simplified clouds have several miss-
ing portions including object edges, whereas our method enhances the salient
features and captures the overall object structure simultaneously. We do not
provide corresponding surface reconstructions and hence quantitative results for
this baseline because their low simplified point cloud sizes (N = 1, 024 and 512)
and aforementioned missing areas will always result in open meshes.
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The O(M3) and O(M2N) complexities associated with training and predic-
tion respectively in the greedy inference scheme described in Section 3.3 allow
for increased scalability compared to typical GP regression, in which inference
has O(N3) complexity. The scalability of our approach is limited by the fact
that, as in a conventional exact GP, we have a storage demand associated with
K matrix which scales according to O(N2). However, we can circumvent this is-
sue when N is very large by simply using Algorithm 1 with a randomly selected
subset of P . For Armadillo and Dragon we obtain the above results with just
25,000 randomly selected points. For a large point cloud such as Lucy, we obtain
competitive results using a subset of just 40,000 points to run our simplification
algorithm.

5.2 Point cloud registration

As discussed earlier, PC simplification has benefits for many downstream tasks,
not solely surface reconstruction. In Table 2 we present registration results on
some simplified clouds. We firstly translate and rotate the original, HC and GP-
simplified clouds in the same fashion, before performing global and ICP point-to-
point registration [3] with the Open3D package [36]; visualisations are available
in the supplementary material (Figure 4). Our GP-simplified cloud allows for
quicker registration and leads to superior inlier RMSE.

Table 2. Inlier RMSE and time taken for global and ICP registration. Best results are
in red, whilst second-best are in green.

Inlier RMSE (↓) Time (s) (↓)

Global (10−3) ICP (10−7) Global ICP Total

Original 4.76 4.08 0.017 1.448 1.465
HC 5.41 4.08 0.018 0.046 0.064

GP (ours) 3.91 4.08 0.017 0.040 0.057

6 Conclusion

In this work we have presented a novel, one-shot point cloud simplification al-
gorithm capable of preserving both the salient features and the overall structure
of the original point cloud. We reduce the cloud size by up to three orders
of magnitude without the need for computationally intensive training on huge
datasets. This is achieved via a greedy algorithm which iteratively selects points
based on a selection criterion determined by modeling the surface variation over
the original point cloud using Gaussian processes with kernels which operate on
Riemannian manifolds. We show that our technique achieves competitive results
and runtimes when compared to a number of relevant methods, outperforming
all baselines tested in terms of mean Hausdorff distance on Lucy, the largest and
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most complex point cloud we consider, consisting of approximately 14 million
points. Our method can also be used to improve the computational efficiency of
downstream tasks such as point cloud registration with no negative effects on
the empirical performance.

Future work: Whilst Hausdorff distance is a useful metric, it is not the ideal
candidate for assessing the feature sensitivity of a simplification algorithm, as
it tends to return lower errors for more evenly distributed clouds. Whilst out
of the scope of this work, there is a clear need for a well-defined and widely
adopted error metric for curvature-sensitive simplification. Currently, the best
way to evaluate this is a qualitative visual inspection of the resulting point cloud
(or reconstructed mesh). This view is supported by the fact that some recent
works employ user studies to evaluate their feature-preserving approaches [28].

In this work we study the setting where we enforce the restriction that the
simplified cloud be a subset of the original; as discussed in Section 3.3, a greedy
inference scheme is appropriate in this setting. However, this assumption could
be relaxed and sparse GPs can be used to perform continuous optimization of
the inducing points across the point cloud [15]. This would allow occluded as well
as outlier-ridden extremely noisy point clouds, where the original observations
do not necessarily lie on the true surface of the manifold, to be denoised and/or
simplified.
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Supplementary Material

1 Additional experimental details

Our approach practically has no user-specified parameters, as it generates a
simplified cloud based on the desired simplification ratio (α). However, we supply
to our algorithm (Algorithm 1 in main text) some fixed default values which work
well for most point clouds. We set kopt = 200 for all experiments as even with a
small subset of the original point cloud, the GP typically converges on an optimal
set of hyperparameters within 100 iterations. kinit was chosen to be 1/3 of the
target number of points in the simplified cloud, a ratio which empirically works
well across all point clouds tested. Finally, kadd is determined adaptively based
on kinit, N and M . Our algorithm is implemented in the PyTorch framework, and
whilst the runtimes reported in Table 1 of main manuscript were achieved with
GPU acceleration using an NVIDIA A100 with 80GB of RAM, our algorithm
can also be run purely on a CPU. All baselines other than Potamias et al. and
APES were run on an Intel i7-11800H CPU with 32GB RAM.

2 Additional visualisations and experiments

On the following pages we present additional visualisations and quantitative
comparisons to accompany the results presented in the main text. Figure 1 shows
the some original meshes provided here for a better visual comparison. Figure
2 shows the surface reconstruction results on Lucy. Figure 3 shows the simpli-
fied clouds and reconstructed meshes for all techniques on the Armadillo cloud.
Figure 4 is a qualitative comparison of the HC and GP-based approaches to
performing point cloud registration on the Dragon cloud.

Furthermore, we validate our technique’s feature-sensitive approach on real-
world scanning datasets captured using different acquisition devices. Firstly, we
use a desk scene point cloud from the NYU Depth V2 dataset, derived from
RGBD data acquired using RGB and Depth cameras from Microsoft Kinect.
This cloud and the resulting simplification results from proposed and Potamias
et al. methods are shown in Figure 5. Secondly, we acquired point clouds from
three real-life objects: an angel figure, a human and a bike frame. They were
captured using FARO’s scan-in-a-box system, photogrammetry and AliceVision’s
Meshroom and Artec 3D’s portable 3D scanner respectively. The three of them
when simplified using our method with α = 0.04, 0.05 and 0.6 respectively
give results which are shown in Figure 6. In line with the quantitative results
provided in the main text, we also report the mean and maximum Hausdorff
distances along with the mean surface variation values of all the aforementioned
simplified point clouds in Table 1. As per the given evaluation metrics, this
table yet again confirms the fact that our algorithm mostly stays within the
top three simplification methods. Yet again, as mentioned in our conclusion,
complete disagreement of quantitative and qualitative results for the NYU scene
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using Potamias et al. and proposed method justifies our argument that visual
inspection is the best way to evaluate the feature sensitivity of a method.

Finally, in Figure 7 we show an extensive comparison of our method with all
the mentioned simplification techniques for a range of simplification ratios for the
angel point cloud. Again, our method works best for striking a trade-off between
enhancing salient features and keeping the low curvature region well-sampled,
and hence leads to the best reconstruction results (α = 0.05) when compared to
the original angel mesh (Figure 1). The reconstructions obtained from WLOP,
PC-Simp, AIVS and Potamias et al. simplified clouds are less detailed around
salient features (compare the hair, fingers, face, wings and feet with the original
angel mesh in Figure 1) while the one from HC-simplified cloud is quite poor
around the torso region of the angel because of less density of points around low
curvature regions in the simplified cloud.

Ablation and noise studies: We conduct experiments to understand the sig-
nificance of some parameters within our algorithm. These parameters were kinit,
i, kopt, and k (the number of initial points chosen using FPS, the number of
times the hyperparameters of the GP are optimized, the number of points used
for hyperparameter optimization, and the number of neighbourhood points used
for surface variation estimation). More specifically, while keeping all other pa-
rameters fixed and varying just one, we compute the Chamfer distance between
the original and the simplified clouds of the Stanford bunny for the simplification
ratio (α) of 0.2. Moreover, we also quantify and extend the results of simplifying
a noisy Armadillo in the main text by providing Chamfer distance between the
original Armadillo with varying noise levels (Gaussian noise of standard devia-
tion n× d, where d is the bounding box diagonal length, is added to every point
position) and simplified versions of them for the simplification ratio (α) of 0.04.
All of these results are given in Table 2.

Armadillo DragonLucy Angel

Fig. 1. The original Stanford meshes and the angel mesh.
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GP (Proposed) HC WLOP AIVS   Potamias et al.      

Fig. 2. Surface reconstruction results of the simplified version of the Lucy point cloud
for simplification ratio α = 0.002 for all evaluated simplification techniques except PC-
Simp.

GP (Proposed)       HC WLOP PC-Simp                AIVS          Potamias et al.          

Fig. 3. Simplified representations of the Armadillo point cloud for simplification ratio
α = 0.05 (top row) and associated reconstructed meshes (bottom row) for all evaluated
simplification techniques.
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Before                                                                                   After                                                                                   

Original

HC

GP
(Proposed)

Fig. 4. Global and ICP registration results shown for the original, HC and GP-
simplified versions (simplification ratio α = 0.03) of the Stanford dragon.

Original GP (Proposed) Potamias et al. 

Fig. 5. GP-based and Potamias et al. simplification applied on a point cloud derived
from real-life NYU Depth V2 Dataset’s desk scene with simplification ratio α = 0.03.
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Original GP (Proposed)Original GP (Proposed) GP (Proposed)Original

Fig. 6. Simplification of three self-acquired point clouds.

Table 1. Empirical results for all tested simplification methods for the remaining point
clouds. We report the maximum and mean Hausdorff distances between the original
meshes, and the meshes reconstructed from the simplified point clouds. Also reported
is the average surface variation over each simplified point cloud. Best, second-best and
third-best results are in red, green and blue respectively.

Mean Hausdorff Distance (↓) Max. Hausdorff Distance (↓) Mean Surface Variation (↑)

Angel Bike frame Human NYU Angel Bike frame Human NYU Angel Bike frame Human NYU

GP (ours) 0.000172 0.001921 0.196125 0.045540 0.001701 0.019782 4.287749 1.704832 0.0445 0.1021 0.0309 0.0487
HC 0.000270 0.001959 0.395263 0.048864 0.006358 0.019743 10.380267 1.483680 0.0509 0.1003 0.0407 0.0648

WLOP 0.000098 0.006128 0.153166 0.046066 0.000920 0.086360 4.410541 1.671164 0.0294 0.0737 0.0169 0.0403
PC-Simp 0.000150 0.001927 0.369116 0.044758 0.048970 0.020815 12.259072 1.741011 0.0351 0.1031 0.0260 0.0463

AIVS 0.000502 0.004217 0.518831 0.080380 0.002092 0.016377 9.786209 1.754694 0.0321 0.0760 0.0142 0.0530
Potamias et al. 0.000240 0.002117 0.327904 0.012680 0.002247 0.028753 6.091248 0.669750 0.0538 0.1174 0.0376 0.0606

Table 2. Ablation and noise studies on the Stanford bunny and Armadillo respectively.
Here, kinit, i, kopt, k, and n are the number of initial points chosen using FPS, the
number of times the hyperparameters of the GP are optimized, the number of points
used for hyperparameter optimization, the number of neighbourhood points used for
surface variation estimation, and the noise factors respectively (Section 2).

Ablation studies Noise studies

kinit CD i CD kopt CD k CD n CD

500 7.4345e-06 50 3.1976e-06 50 3.2453e-06 5 2.7721e-06 0.0001 1.9456
1000 5.0463e-06 100 3.2049e-06 100 3.2237e-06 10 3.0523e-06 0.0005 1.9532
1500 3.8995e-06 150 3.2471e-06 150 3.2156e-06 15 3.1314e-06 0.001 1.9148
2000 3.2469e-06 200 3.2153e-06 200 3.2529e-06 20 3.2396e-06 0.005 2.1729
3000 2.4893e-06 300 3.2253e-06 300 3.2139e-06 30 3.3033e-06 0.01 3.1361
5000 1.8498e-06 500 3.1996e-06 500 3.2236e-06 50 3.4406e-06 0.02 4.8644
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0.01

0.03

0.05

0.1

GP (Proposed) HC WLOP PC-Simp AIVS Potamias et al. 

Fig. 7. Simplified representations of the angel point cloud for a variety of simplification
ratios (leftmost column) and the meshes reconstructed from clouds obtained using
simplification ratio α = 0.05 for all evaluated simplification techniques (last row).
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